Hydronic Fan Coil

Manual of Installation, Operation and Maintenance

This manual contains instructions for the installation, operation and maintenance of the Hydronic Fan Coil. Some models are equipped with heating only coils. Read it carefully before using the air handler. Then keep it handy for quick future reference by inserting it in the plastic envelope provided on the appliance.

Rating Plate

A rating plate identifying the air handler will be found inside the front access panel. A rating plate identifying the water heater will be found above or to the left of the gas control valve. When referring to the air handler and/or water heater, always have the information listed on the rating plate readily available.

Consumer Responsibilities

Please take the time to read not only this manual but also the warranty sheet enclosed. Warranty of parts and the air handler will depend on the proper installation, maintenance and operation of the air handler. Furthermore, the warranty shall be void if the design or structure of the air handler is, or is attempted to be, modified or altered in any way, including, but not limited to, by attaching non-Company approved appliances or equipment.

The manufacturer of this air handler will not be liable for any damages because of failure to comply with the installation and operating instructions outlined on the following pages. Use them as a guide to check the propriety of the air handler installation.

You will need to maintain the air handler and water heater as outlined in this manual.

Equipment in this carton was inspected and verified to be in good condition at the time it left the factory. When received, a visual inspection of the equipment should be made and any damage noted on the delivery receipt. A damage claim should then be filed immediately with the carrier.

Fill in the rating plate information here:
MODEL NO. ________________________________
SERIAL NO. ________________________________
INSTALLATION DATE _______________________

Fill in the installation information here:
Installer _________________________________
Street Address ________________________________
City/State/Zip ________________________________
Phone #____________________________________

Distributor _________________________________
Street Address ________________________________
City/State/Zip ________________________________
Phone #____________________________________

ALL TECHNICAL AND WARRANTY QUESTIONS SHOULD BE DIRECTED TO THE LOCAL DEALER FROM WHOM THE AIR HANDLER WAS PURCHASED. IF YOU ARE UNSUCCESSFUL, PLEASE WRITE TO APOLLO HYDROHEAT AND COOLING AT THE ADDRESS LISTED BELOW.

Repair Parts

FOR SERVICE OR REPAIR PARTS CONTACT:

First: The Installing Contractor

Second: The Local Distributor

Third: Apollo HydroHeat and Cooling
500 Lindahl Parkway
Ashland City, TN 37015

0002916570-0
How the System Works

This section will answer many of the most often asked questions about the system.

How does it work?

The heating system uses a gas water heater to furnish heat to the space of a residence, as well as its domestic hot water. A simple recirculating loop of hot water is tapped off near the top of the heater and is circulated through a finned tube heat exchanger in an air handler or duct coil that furnishes warmed air to the space. The cooled water (140° cooled to about 120°) is then returned to the water heater, near the bottom of the tank. Each air handler includes a circulating pump and controls, factory piped and wired.

The water heater may include side tappings to provide the recirculating loop connections. When a conventional heater is used, special fittings including check valves are used at the hot and cold water connections.

The control of the heating system is very simple. A conventional heating or heating/cooling thermostat is used. On a call for heat, the hot water circulator is energized through a relay, as is the blower motor. Hot water immediately begins circulating through the heat exchanger, and heats the air. Typical leaving air temperatures are 95° - 105°. When the thermostat is satisfied, the pump and blower both stop.

How is a Hydro Heat System sized?

Proper sizing of the water heater is essential, and begins with the ACCA Manual J design heat loss of the structure to be heated. The heating capacity of the air handler of coil selected must be equal to or larger than the design heat loss. Then, the water heater selected must have a heat output equal to or greater than the coil or air handler heating capacity.

Does a Hydro Heat System require a larger tank size?

In general, it does not require a larger tank size to furnish space heat as well as domestic water. When proper calculation has been made to determine the BTUH input required, and the heater has been selected on that basis, the tank size must be no smaller than 40 gallons, and should be at least that normally used for the expected occupancy of the home.
Table of Contents

Rating Plate ... 1
Consumer Responsibilities .. 1
Repair Parts ... 1
How the System Works .. 2
Safety ... 4
Preparing for the New Installation 4-11
 - Location .. 4
 - Clearance to Combustible Materials 4
 - Typical Installations .. 5
 - Installation Notes ... 6
 - Conventional Water Heater Supplying a Single Air Handling Unit .. 6
 - Circulating Loop Water Heater Supplying a Single Air Handling Unit ... 6
 - Water Piping .. 7
 - Water Pressure ... 7
 - Discharge Ducting ... 7
 - Return Ducting .. 7
 - Optional Air Filter .. 8
 - Condensate Drain ... 8
 - Low Voltage Wiring .. 8
 - Line Voltage Wiring ... 8
 - Wiring Diagrams .. 8
 - Low Temperature Protection Switch 9
 - Refrigerant Piping ... 9
 - Charging by Superheat ... 10
 - System Start Up Procedure .. 11
 - Water Heater Temperature Adjustment 11
 - System Shutdown ... 11

Setting Equipment ... 12-25
 - RFC Series .. 12-13
 - HH Series .. 14
 - VB Series .. 15
 - HB Series .. 16-17
 - W Series .. 18-19
 - S,M&L Heating Only Models 20
 - S,M&L with Evaporator Coil 21-23
 - H Series .. 24-25

Troubleshooting .. 26-27
 - Do’s and Don’ts .. 26
 - Air Handler Service Checklist 27

Product Warranty .. 28-29
Safety

⚠️ WARNING

HOTTER WATER CAN SCALD: Water heaters are intended to produce hot water. Water heated to a temperature which will satisfy space heating, clothes washing, dish washing, and other sanitizing needs can scald and permanently injure you upon contact. Some people are more likely to be permanently injured by hot water than others. These include the elderly, children, the infirm, or physically/mentally handicapped. If anyone using hot water in your home fits into one of these groups or if there is a local code or state law requiring a certain temperature water at the hot water tap, then you must take special precautions. In addition to using the lowest possible temperature setting that satisfies your hot water needs, a means such as a mixing valve, shall be used at the hot water taps used by these people or at the water heater. Mixing valves are available at plumbing supply or hardware stores. Follow manufacturers instructions for installation of the valves. Before changing the factory setting of the thermostat read the “Temperature Regulation” section in this manual.

⚠️ WARNING

Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system which has been under water.

Preparing for the New Installation

Note: Information in this section is generic. Refer to “Setting Equipment” section of this manual for specific models.

Location

There may be up to 70’ of separation between the air handler and water heater. The location selected for the water heater should be as close to the stack or chimney as practical, and as centralized with the piping system for the air handler as possible. They (air handler/water heater) should be located in an area protected from the elements.

In installations in areas that may experience freezing temperatures, care should be taken to protect equipment from freezing, and dwelling from water damage, should freezing occur. See “Low Temperature Protection Switch” on page 9.

NOTE: The locations selected should provide adequate clearances for servicing and proper operation of the air handler.

⚠️ CAUTION

This hydronic air handler as all hydronic air handlers will eventually leak. Do not install without adequate drainage provisions where water flow will cause damage.

Clearance to Combustible Materials

The air handler can be operated with 0” of clearance to combustible materials from any side, front or back. Discharge clearance is also 0”.

NOTE: For water heater clearances see instruction manual that was included with the water heater.

NOTE: When these units are installed without return air ducts, applicable installation codes may restrict their installation to a single story residence.
Preparing for the New Installation

Typical Installations

Note: Typical Installation drawings are generic. Air handler and water heater styles vary by model. Refer to “Setting Equipment” of this Manual for specific models.
Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer’s instructions.

Water Heaters used for space heating must be listed and labeled as “suitable for (potable) water heating and space heating”. Water heaters used for space heating must also be used for domestic (potable) water heating.

WARNING

When the system requires water at temperatures higher than required for other uses, the hot water system may require a means such as a mixing valve to be installed to temper the water at certain points of use. Some people are more likely to be permanently injured by hot water than others; these include the elderly, children, the infirm, or the physically/mentally handicapped. Before immersing yourself or anyone else in hot water, be sure to check the water temperature. **WARNING: HOTTER WATER INCREASES THE RISK OF SCALD INJURY.** (Also see “Temperature Regulation” section in water heater manual) Mixing valves are available at plumbing supply or hardware stores. Follow manufacturers instructions for installation of these valves.

Note: If the Air Handler is equipped with an internal check valve, do not install a check valve in the supply line to the air handler.
Preparing for the New Installation (cont’d)

Installation Notes

Note: Installation notes are generic. Air handler and water heater styles vary by model.

Conventional Water Heater Supplying a Single Air Handling Unit

1. Total piping footage should not exceed 140 feet.
2. All piping should be ¾" copper or approved plastic. NOTE: Acetal plastic fittings should not be used in recirculating hot water systems. Use only brass or copper fittings.
3. A depneumatic fitting is not supplied. This device must be installed when there is greater than an 8 foot change in elevation between the top of the air handler and top of the water heater.

NOTE: Water heaters that have an anode rod or another fitting in the hot outlet cannot be used. The depneumatic fitting will not work on these. NOTE: The depneumatic fitting with supply line and return line check valves is available as a kit (Accessory 9001309).

INSTALLATION DIAGRAM

Install the depneumatic fitting into the hot outlet fitting of the water heater. Out of the top of the depneumatic fitting run a ¾" pipe of copper or approved plastic to the inlet fitting on the air handler. The tapping in the side of the depneumatic fitting is the domestic hot supply and should be piped to the hot supply line. The cold side piping should be done as shown in the diagram.

4. Heating Unit Supply Connection labeled–“Hot Inlet Supply from Water Heater”.
5. Heating Unit Return Connection labeled–“Cold Outlet Return to Water Heater”.
6. Because inlet and outlet positions are different on each model, refer to labeling on back of cabinet.

Circulating Loop Water Heater Supplying a Single Air Handling Unit

1. Total piping footage should not exceed 140 feet.
2. All piping should be ¾" copper or approved plastic. (Note: Acetal plastic fittings should not be used in recirculating hot water systems. Use only brass or copper fittings.)
3. Hot supply tapping labeled–“Hot (Outlet) Recirculating Loop Connection.”
4. Cold return tapping labeled–“Cold (Return) Recirculating Loop Connection”.
5. Heating unit supply connection labeled–“Hot Inlet-Supply From Water Heater.”
6. Heating unit return connection labeled–“Cold Outlet-Return to Water Heater.”
7. Because inlet and outlet positions are different on each model, refer to labeling on back of cabinet.

When the system requires water at temperatures higher than required for other uses, the hot water system may require that a means such as a mixing valve be installed to temper the water at certain points of use.

DEPNEUMATIC FITTING KIT (part #9001309)

A depneumatic fitting should be used if this unit is installed with any water heater other than a side connection circulating loop water heater. They must be installed in the water heater as shown.

When the system requires water at temperatures higher than required for other uses, the hot water system may require that a means such as a mixing valve be installed to temper the water at certain points of use.
Preparing for the New Installation (cont'd)

Water Piping

This air handler is intended for use with pressurized potable hot water sources with the rated maximum entering water temperature on the air handling unit. For systems using oil or gas-fired domestic water heaters as a hot water source, pipe as shown in the diagram on page 5. The system should be installed only with new piping that is suitable for potable water, such as copper or hot polybutylene. Do not use with PVC piping. All piping should be done in \(\frac{3}{4} \)″ with a maximum total piping footage of 140 feet. The unit has \(\frac{1}{2} \)″ I.D. copper water connections, therefore, a \(\frac{3}{4} \)″x\(\frac{1}{2} \)″ adapter is required. The cabinet finish should be shielded from the torch flame during soldering. Piping run through unconditioned areas should be insulated to prevent freezing and minimize heat loss.

⚠️ WARNING
When the system requires water at temperatures higher than required for other uses, the hot water system may require a means such as a mixing valve to be installed to temper the water at certain points of use. Some people are more likely to be permanently injured by hot water than others; these include the elderly, children, the infirm, or the physically/mentally handicapped. Before immersing yourself or anyone else in hot water, be sure to check the water temperature. WARNING: HOTTER WATER INCREASES THE RISK OF SCALD INJURY. (Also see “Temperature Regulation” section in water heater manual) Mixing valves are available at plumbing supply or hardware stores. Follow manufacturers instructions for installation of these valves.

⚠️ WARNING
Toxic chemicals such as used for treatment of boilers or non-potable water heating appliances shall never be introduced into a potable water space heating system.

Pipes and fittings should be installed in compliance with the installation drawing and all applicable local codes. Have the installer show you where the water shut off valve for the water heater is installed so that you know where and how to shut the water off. It is recommended that such a valve be located in close proximity to the water heater. See installation drawings on page 5. To insure complete filling of the system, follow “System Start Up Procedure” section on page 10.

⚠️ CAUTION
After system has been checked, do not allow it to be drained or shut off if there is a possibility of freezing. See System Shutdown section.

⚠️ CAUTION
Operating an empty or partially filled system will result in damage.

If a system (air handler/water heater) is installed in a closed and/or high pressure water system; such as one having a back flow preventer, check valve or water meter with check valve in the cold water supply line, means shall be provided to control thermal expansion. Contact the water supplier or local plumbing contractor on how to control this situation.

Water Pressure

The water supply system incorporates the air handler and water heater and conditions created in the water supply system and effected by the water heater also involve the air handler.

Water supply systems may, because of high line pressure frequent cut-offs, the effects of water hammer and others, have installed devices such as pressure reducing valves, check valves, back flow preventers, etc...to control these types of problems. When these devices are not equipped with an internal by-pass, and no other measures are taken, they (the devices) cause the water system to be closed. As water is heated, it expands (thermal expansion) and closed systems do not allow for the expansion of heated water.

The water within the water heater tank expands as it is heated and increases the pressure of the water system. If the relieving point to the water heater's temperature-pressure relief valve is reached, it (the T&P valve) will relieve the excess pressure. This is an unacceptable condition and must be corrected.

It is recommended that any devices installed which could create a closed system, have a by-pass and/or the system have an expansion tank to relieve the pressure built by thermal expansion in the water system. Contact the local water supplier and/or plumbing contractor for assistance in controlling these situations.

Discharge Ducting

This unit has its blower discharging directly into the supply duct system resulting in high velocities close to the end of the unit. To insure complete filling of the system, follow “System Start Up Procedure” section on page 10.

Return Ducting

Air velocity in return should be as low as practical. 400 feet per minute or less is good design. Filters should not exceed 400 feet per minute air velocity.
Preparing for the New Installation (cont'd)

Optional Air Filter
Air handlers may or may not be factory equipped with an air filter. Many times a filter will not be installed because the return grille has its own filter. In these cases a filter installed in the air handler is not recommended. By referring to the repair parts chart, the location can be established. Removing the access panel will gain access to the filter. It should be checked periodically and replaced if necessary. The filter is a standard item that can be obtained locally.

Condensate Drain
The internal air handler drain pan is supplied to remove normal condensation. The primary stub is 3⁄8" N.P.T. and the secondary stub may be 1⁄2" or 3⁄4" N.P.T. Piping from each stub is to have a 1 1⁄2" minimum trap and each be run is such a manner as to provided enough slope for adequate drainage to a visible area. Do not pipe these two fittings together into a common drain. When horizontal run exceeds 15 feet, a vent tee may be necessary to go between the unit and the trap to insure proper drainage. The condensate drainage system should be tested by pouring water into the unit drain pan prior to operation of the unit.

Low Voltage Wiring
(Except RFC Series, Refer to “Setting Equipment” section)
Connections of the low voltage thermostat and condenser control are to be made to the low voltage harness exposed on the outside of the cabinet. When splicing these wires, the use of insulated butt splices instead of wire nuts will yield a neater, more reliable connection.

Make low voltage connections to thermostats and condensing units as shown in the wiring diagrams. Conventional heat/cool or heating only thermostats will work satisfactorily.

Line Voltage Wiring
Line voltage wiring should be done in compliance with all national and local codes. The 3⁄8" hole located in the discharge end of the unit provides access to the line voltage lead wires. Wire incoming power as described on the schematic.

Wiring Diagrams

SINGLE SPEED OPERATION

TWO SPEED OPERATION
Preventing for the New Installation (cont'd)

Low Temperature Protection Switch

This appliance is furnished with a field installed Low Temperature Protection Switch (LTP). The LTP is a switch intended to operate the circulating pump in the heating system when internal temperatures approach freezing. The LTP will not function during a power outage.

Installation

Install the low temperature protection switch near the front of the coil as shown in the illustration. Select a location between tubes. Open a space in the fins by inserting a screwdriver and twisting. DO NOT DAMAGE TUBES. Insert the sensor and pinch fins around it to assure secure installation. Wiring should be routed to the control box in such a way as to prevent accidental removal of the sensor during any future servicing of the equipment.

Wiring

This switch is a Low Voltage device. It should be wired in parallel with the Red and Blue Low Voltage leads, as shown in wiring diagram included.

When retrofitting equipment with this control, replace existing wiring diagram with the diagram included with this kit.

Refrigerant Piping

Units equipped with evaporators will require liquid and insulated suction piping sized in accordance with the condensing unit manufacturer's recommendations. The evaporator coils are fitted with copper stubs to which the refrigerant line should be soldered. Use silver solder or other high temperature brazing alloy intended for refrigeration work. The stubs are located close to the side of the cabinet so it is a good idea to protect the cabinet insulation from flame damage with a small piece of sheet metal. Also, the manufacturer recommends that the refrigerant lines are filled with dry nitrogen before soldering. This will minimize the formation of ash inside the lines that can clog the capillary strainer or orifice metering device.
Preparing for the New Installation (cont'd)

Charging By Superheat

Charging by superheat is the most precise method of getting the optimum refrigerant charge in an air conditioning system. This method best matches the system's ability to absorb heat with the available heat load on the evaporator. Superheat charging can be used on any air conditioning unit with cap tube or fixed orifice liquid control when charging is done in ambient temperatures above 60°F. Superheat in this type of system will vary with change of conditions of air over the condenser and evaporator. The amount of superheat at the compressor must be adjusted to meet these conditions.

Measuring Superheat

1. Make sure evaporator coil has rated CFM of air flow.
2. Install accurate refrigerant pressure gauge to suction service valve gauge port or fitting at the condensing unit.
3. Attach an accurate thermometer to the bottom side of suction line as close to gauge port as possible. Make sure thermometer is in good thermal contact with suction line. Insulate the thermostat and suction line against effects of ambient air temperature.
4. With unit operating, measure condenser inlet air dry bulb temperature and evaporator inlet air wet bulb temperature.
5. Using the Superheat Table, find proper superheat at the intersection of these two temperatures.
6. Measure suction pressure. Using Pressure Temperature Chart, find evaporator saturated suction temperature for this pressure.
7. Measure suction line temperature at condensing unit.
8. The difference between suction line temperature and saturated temperature is the amount of superheat.
9. If superheat is too high – refrigerant must be added. If superheat is too low – refrigerant must be removed.

Example of checking system charge by Superheat

Assume condenser air inlet D.B. to be 90°F and evaporator air inlet W.B. to be 68°F. From the Superheat Table we find the correct superheat for these conditions to be 15 degrees.

The suction pressure at the time is 60 PSIG and suction line temperature 55 degrees. Using Pressure Temperature chart we find that for a 60 PSIG suction pressure – the evaporator saturation temperature will be 34 degrees.

The difference between suction line temperature and saturation temperature is the amount of superheat.

\[
\text{Suction line temp.} \quad 55° \\
\text{Suction press. @ 60 PSIG} \quad 34° \\
\text{Saturation temp.} \quad 21°
\]

The 21° superheat is higher than the required 15°. The system is undercharged. As we add refrigerant, the suction pressure will rise causing saturation temperature to rise. At the same time, suction vapor temperature will fall. In other words the two temperatures will come closer together as refrigerant is added.

\[\text{CAUTION}\]

Wait at least 5 minutes after adding or removing refrigerant from system before attempting to re-measure superheat.

<table>
<thead>
<tr>
<th>CONDENSER AIR INLET TEMP. - °F - D.B.</th>
<th>54</th>
<th>56</th>
<th>58</th>
<th>60</th>
<th>62</th>
<th>64</th>
<th>66</th>
<th>68</th>
<th>70</th>
<th>72</th>
<th>74</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>23</td>
<td>26</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>23</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>23</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPER SUPERHEAT ASSURES PROPER SYSTEM CAPACITY AND EFFICIENCY.
Preventing for the New Installation (cont’d)

System Start Up Procedure

NOTE: Heating system should not be switched on until system filled and pumps vented.

1. Fill and pressurize the water heater and air handler.
2. The water heater should be started. At this time it will take approximately 45 minutes for it to come up to temperature. Lighting instructions will be found on the rating plate attached to the water heater.
3. Vent air from the water tank by opening a hot water spigot.
4. Vent and flush the supply and return lines by opening the installed purge valve in the air handler or a field installed purge valve on the return line of the heating loop. Run approximately 5 gallons of water at a high flow rate to purge.

5. Vent Grundfos pump by loosening the screw in the center of the pump as shown below. Retighten the screw as soon as water appears. Units equipped with Taco pumps need not have their pumps vented.
6. Energize the unit by switching on the line voltage source and the thermostat. The fan and pump should start simultaneously. The water coil should become warm, and after a few minutes of operation, any churning noise in the pump should subside. It may be necessary to unwire the fan motor to listen for pump operation. Properly operating pumps are nearly silent in operation.
7. Repeat Step 5 to remove any remaining air from Grundfos pump.

Water Heater Temperature Adjustment

The water temperature dial of the water heater is set at the lowest position during manufacture and must be turned to the desired setting by the user. The faceplate of the gas control has been labeled with a range of temperature settings.

Due to the nature of the typical gas water heater the water temperature in certain situations may vary up to 30°F higher or lower at the point of use such as, bathtubs, showers, sinks, etc.

WARNING

When the system requires water at temperatures higher than required for other uses, the hot water system may require that a means such as a mixing valve be installed to temper the water at certain points of use.

WARNING

CAUTION

Periodic draining and cleaning of sediment from the water heater tank may be necessary.

1. Turn the gas control knob to the “OFF” position.
2. Turn the air handler thermostat off.
3. Close the cold water inlet valve to the water heater.
4. Open a nearby hot water faucet.
5. Open the water heater drain valve.
6. Perform cleaning procedure as necessary.

WARNING

The water passing out of the drain valve may be extremely hot. To avoid being scalded, make sure all connections are tight and that the water flow is directed away from any person.
Setting Equipment - RFC Series

RFC1520, RFC2025, RFC2030

⚠️ CAUTION

This hydronic air handler as all hydronic air handlers will eventually leak. Do not install without adequate drainage provisions where water flow will cause damage.

Read the “Safety” and “Preparing for the New Installation” sections prior to installation of the Hydronic Air Handling System before beginning the installation. If you do not completely understand or have any questions contact a qualified installer before proceeding.

The installation must comply not only with this manual but all local and National codes. Installation should allow 25” of clearance in front of the access panel for service. Avoid refrigerant and condensate line routing that makes service panel removal difficult.

Hydronic Coil

PLEASE READ COMPLETELY BEFORE ATTEMPTING TO INSTALL THIS COIL.

The coil may be used with almost any gas, oil, or electric furnace or with a heat pump, air conditioning blower, or as an “in line” duct-mounted heater to supply additional or zoned winter comfort to hard to heat areas. **CARE MUST BE TAKEN TO PROPERLY INSTALL THE COIL** **TO PREVENT DAMAGE TO EXISTING EQUIPMENT.** (GAS/OIL/ELECTRIC FURNACE/AIR CONDITIONER OR AIR HANDLER.)

The coil may also be installed in the supply duct work. This, however, will not allow the coil to be operated simultaneously with the furnace. Care should be taken to mount the coil far enough from the discharge of the existing furnace so that the coil does not impede air flow. Maintain at least 8” between heat exchanger and coil.

The coil may be installed in supply or return ductwork. The return duct installation is preferred in the event that solar, gas or oil water-heated sources are used for primary and or preheating to the existing furnace. When installing retrofit coils in the return, remember that the air over the blower motor will be warmed, where prior to the installation of the coil, the air was room temperature.

This can cause blower motors operating under 160°F maximum on return of system marginal conditions to cycle on their thermal protective devices. **Be certain** to relocate the filter so that all air through the coil is filtered air.

The circulator is pre-plumbed to the coil [with control box (24VAC coil-115VAC contacts)] to control the circulation of hot water. Consult wiring and piping diagrams shown for RFC Series.
Setting Equipment - RFC Series

Wiring for RFC Series

Typical Installation

Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer’s instructions.

Refer to the typical installations on page 5, and installation notes on page 6 when connecting the water heater to the air handler.

Water heaters used for space heating must be listed and labeled as “suitable for (potable) water heating and space heating”.

Water heaters used for space heating must also be used for domestic (potable) water heating.
Read the “Safety” and “Preparing for the New Installation” sections prior to installation of the Hydronic Air Handling System before beginning the installation. If you do not completely understand or have any questions contact a qualified installer before proceeding.

The installation must comply not only with this manual but all local and National codes. Installation should allow 25" of clearance in front of the access panel for service. Avoid refrigerant and condensate line routing that makes service panel removal difficult.

Before installing the air handler check blower wheel for free rotation.

This unit can be used in upflow and down flow discharge positions and also in horizontal discharge positions where the access panel is located at the top or bottom of the unit.

Horizontal discharge positions that cause the pump shaft to be vertical are not acceptable.

Maintain ample clearance outside of the access panel to allow for servicing. Clearance to combustible material is 0" to the sides and back. The discharge clearance is also 0".

Suspend the unit using the mounting hardware included. The two 16" angle brackets are to be secured to the support structure using the isolation grommets and eyelets. The eyelets will accept ¼" hardware such as lag bolts, threaded rod, etc. Do not overtighten the mounting hardware since this will reduce the noise isolation effect of the grommets. Please follow the assembly diagram as closely as possible.
Setting Equipment - VB Series

VB2418, VB2618, VB3024

CAUTION

This hydronic air handler as all hydronic air handlers will eventually leak. Do not install without adequate drainage provisions where water flow will cause damage.

Read the “Safety” and “Preparing for the New Installation” sections prior to installation of the Hydronic Air Handling System before beginning the installation. If you do not completely understand or have any questions contact a qualified installer before proceeding.

The installation must comply not only with this manual but all local and National codes. Installation should allow 25" of clearance in front of the access panel for service. Avoid refrigerant and condensate line routing that makes service panel removal difficult.

Before installing the air handler, check blower wheel for free rotation.

These units are for use in upflow applications only. If the air handler is installed in an area subject to freezing, consideration of its placement needs to be made.

CAUTION

Installation of the air handler must be accomplished in such a manner that if the condensate drain connections should plug or other causes create an overflow, the flow of (condensation) water will not cause damage to the area adjoining the air handler of to lower floors of the structure. When such locations can’t be avoided, a suitable drain pan should be installed under the air handler. Such a pan should be no greater than 1½" deep, have a minimum length and width of at least 2" greater than the air handler dimensions and should be piped to an adequate drain. Under no circumstances is the manufacturer to be held liable for any water damage in connection with this air handler.

Typical Installation

Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer’s instructions.

Refer to the typical installations on page 5, and installation notes on page 6 when connecting the water heater to the air handler.

Water heaters used for space heating must be listed and labeled as “suitable for (potable) water heating and space heating”.

Water heaters used for space heating must also be used for domestic (potable) water heating.

![Typical Installation Diagram](image)
Setting Equipment - HB Series
HB2418, HB2618, HB3024, HB2400, HB3000

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>This hydronic air handler as all hydronic air handlers will eventually leak. Do not install without adequate drainage provisions where water flow will cause damage.</td>
</tr>
</tbody>
</table>

Read the “Safety” and “Preparing for the New Installation” sections prior to installation of the Hydronic Air Handling System before beginning the installation. If you do not completely understand or have any questions contact a qualified installer before proceeding.

The installation must comply not only with this manual but all local and National codes. Installation should allow 25” of clearance in front of the access panel for service. Avoid refrigerant and condensate line routing that makes service panel removal difficult.

Before installing the air handler, check blower wheel for free rotation.

These units are designed for horizontal air flow only. If the air handler is installed in an area subject to freezing, consideration of its placement needs to be made.

As shipped, the unit is configured for left-hand discharge or airflow. The unit may be converted to right-hand discharge using the following procedure.

Set the unit such that the service panels face upward. Remove both service panels and then remove the two #10 x ½” sheet metal screws securing the drain pan to the cabinet.

Note: The HB2618, HB2418, and HB2012 evaporators have a support/shield attached. This support need not be removed or repositioned for unit reversal.

With the drain pan screws removed, the coil/pan assembly will slide toward the blower and can then be withdrawn from the cabinet.

Fit the coil and drain pan together as shown below and install in the cabinet. The evaporator should be pushed fully into the return end of the unit before reinstalling the drain pan screws. Allow 25” of clearance in front of the access panel for service.

Also, avoid refrigerant and condensate line routing that will make removal of the blower/pump access panel difficult.
Evaporator Detail Model HB3024

Evaporator Detail Models HB2618 and HB2418

Typical Installation

Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer's instructions.

Refer to the typical installations on page 5, and installation notes on page 6 when connecting the water heater to the air handler.

Water heaters used for space heating must be listed and labeled as “suitable for (potable) water heating and space heating.”

Water heaters used for space heating must also be used for domestic (potable) water heating.

Caution

Installation of the air handler must be accomplished in such a manner that if the condensate drain connections should plug or other causes create an overflow, the flow of (condensation) water will not cause damage to the area adjoining the air handler or to lower floors of the structure. When such locations can’t be avoided, a suitable drain pan should be installed under the air handler. Such a pan should be no greater than 1½” deep, have a minimum length and width of at least 2” greater than the air handler dimensions and should be piped to an adequate drain. Under no circumstances is the manufacturer to be held liable for any water damage in connection with this air handler.
Read the “Safety” and “Preparing for the New Installation” sections prior to installation of the Hydronic Air Handling System before beginning the installation. If you do not completely understand or have any questions contact a qualified installer before proceeding.

The installation must comply not only with this manual but all local and National codes. Installation should allow 25" of clearance in front of the access panel for service. Avoid refrigerant and condensate line routing that makes service panel removal difficult.

Before installing the air handler, check blower wheel for free rotation.

There are two methods of framing in-the-wall mount units. The first method described is easiest while the second lends itself to applications where the unit placement is more critical. The units should be hung prior to the installation of sheet rock or other wall covering.

Method one involves using one stud in its original placement and moving the neighboring stud to provide an opening the width as shown in the chart below. Then, a unit support “footer” should be installed between the vertical studs approximately 12" to 16" off the floor. The unit footer should be level and substantial enough to support 150 pounds.

Make sure that the 1" outward flanges on the unit rest on the vertical studs as flatly as possible, sheet rock (or other wall covering) will finish on top of this flange and secure to the exposed two by four studs on either side of the flanges. Once installed, the cabinet penetrations for low and line voltage connections and for refrigerant line connections should not be obstructed by framing members.

The second method, as shown below, involves placing a framing footer and header across two stud spaces with 41½" vertical clearance between them. Vertical studs should then be installed at 16" on-center to provide a nailer for sheet rock.

The unit will have to be set in from behind the wall (due to the supply duct connection and pipe stubs) and can then be secured top and bottom to the header and footer.

The illustration below shows the addition of framing studs behind the unit’s vertical flanges providing a nailer for sheet rock. These can be left off if the sheet rock is screwed to the flanges.

Air Filter

Air handlers are factory equipped with an air filter. Removing the access panel will gain access to the filter. It should be checked periodically and replaced if necessary. The filter is a standard item that can be obtained at hardware stores.
Setting Equipment - W Series

Typical Installation

Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer’s instructions.

Refer to the typical installations on page 5, and installation notes on page 6 when connecting the water heater to the air handler.

Water heaters used for space heating must be listed and labeled as “suitable for (potable) water heating and space heating”.

Water heaters used for space heating must also be used for domestic (potable) water heating.
Setting Equipment - S,M & L Heating Only Models
SA30H, SA30HT, MA45H, MA45HT, LA55H

Typical Installation
Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer's instructions.

Refer to the typical installations on page 5 when connecting the air handler to a water heater without side connections for space heating.

Water heaters used for space heating must be listed and labeled as "suitable for (potable) water heating and space heating".

Water heaters used for space heating must also be used for domestic (potable) water heating.
Read the “Safety” and “Preparing for the New Installation” sections prior to installation of the Hydronic Air Handling System before beginning the installation. If you do not completely understand or have any questions contact a qualified installer before proceeding.

The installation must comply not only with this manual but all local and National codes. Installation should allow 25″ of clearance in front of the access panel for service. Avoid refrigerant and condensate line routing that makes service panel removal difficult.

Before installing the air handler, check blower wheel for free rotation.

CAUTION

This hydronic air handler as all hydronic air handlers will eventually leak. Do not install without adequate drainage provisions where water flow will cause damage.

Typical Installation

Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer’s instructions.

Refer to the typical installations on page 5, and installation notes on page 6 when connecting the water heater to the air handler.

Water heaters used for space heating must be listed and labeled as “suitable for (potable) water heating and space heating”.

Water heaters used for space heating must also be used for domestic (potable) water heating.
1. Lay the unit on its back, and remove lower panel. For LA Series-RH Horizontal, install Splash Baffle. Slots in baffle fit tabs on back of drain pan. Install Evaporator Panel.

2. Remove coil securing bracket. Note: LA-Unit may have coil support bracket. Remove and save to install on left side.
3. Being careful not to damage the coil, lift it from the cabinet, along with the drain pan.

4. Place the drain pan on the coil for left hand discharge, and return the coil with drain pan into the cabinet. **Note: Drawing shows the drain pan installed for left hand discharge.**

5. Reinstall the coil securing bracket.

6. Replace the access panel. **Note: Insulation must be cut away and the rubber plugs moved depending on the position (left or right discharge) of the drain pan.**
Setting Equipment - H Series

H2418, H2824, H3230, H24H, H32H, H2418D, H2824D, H3230D

⚠️ CAUTION

This hydronic air handler as all hydronic air handlers will eventually leak. Do not install without adequate drainage provisions where water flow will cause damage.

Read the “Safety” and “Preparing for the New Installation” sections prior to installation of the Hydronic Air Handling System before beginning the installation. If you do not completely understand or have any questions contact a qualified installer before proceeding.

The installation must comply not only with this manual but all local and National codes. Installation should allow 25” of clearance in front of the access panel for service. Avoid refrigerant and condensate line routing that makes service panel removal difficult.

Before installing the air handler, check blower wheel for free rotation.

This piece of equipment is intended for overhead, furred-in installations. It has a return grille and filter to allow return air to enter the unit directly without additional return ducting. When placing the unit, try to choose a location that is central to the dwelling and cannot get isolated by shutting doors. Hallways are usually the best location.

The unit is shipped with two mounting angles, in most installations these will be screwed flush with the top of the unit across its 24” sides. (See Figures 1 and 2) These flanges will then be used to secure the unit to the trusses or rafters. Use ¾” lag bolts, toggle bolts or threaded rods for this, #8 sheet metal screws may be insufficient. Once the unit is securely hung and the discharge ducting installed, it can be framed in. It is preferable, however, to have the piping done prior to framing to insure easy access to the piping connections and to insure proper grade on the condensation drain.

The framing should be done with 2 x 4 studs laying flat so that they will not obstruct the holes for piping the drains and hot water connections. The entire perimeter of the unit needs to be framed to provide a nailing surface and the nailing surface should be flush with the bottom flange of the unit. Sheet rock or other ceiling material will finish up to the edge of the unit. The grille and service panels have ½” of overhang at the front and back of the unit, and ¾” overhang on the sides of the unit.

In some cases, the framing may have to be done prior to hanging the unit. This is more awkward than the above mentioned framing method, but can be done. Due to the discharge flange, it will not be possible to frame out a 24¾” x 35½” (or 45¼”) hole and then slide the unit into place. It is best to provide two nailers 35½” (or 45¼”) apart with a third stud spanning these at the point where the return end of the cabinet will rest (see Figure 2). The fourth framing member can be attached only after the unit is in place. For this framing method, the mounting angles can be attached to the bottom edge of the unit and then screwed to the framing as shown in Figure 2.

FIGURE 1

FIGURE 2

FIGURE 3

Standard Return Air/Service Panel

For proper installation of the service and return air panels, the finished drywall construction in the ceiling around the air handler should come flush with the edge of the cabinet. The service panel should then be attached to the unit at the discharge end with four phillips head screws in the holes provided. The “L” shaped hinge brackets should be slipped into the narrow slots in the return air panel and attached with two hex head screws through the panel and into the brackets as shown in Figure 3. These hinge brackets will then slip through the corresponding notches in the service panel allowing the louvered return panel to pivot up against the cabinet where two phillips head screws will secure it to the cabinet.
Optional Service Panel for Ducted Return

This solid panel is used when the return air is ducted into the back of the unit. It is screwed to the bottom of the unit using the screws provided.

Figure 4

Refrigerant Piping

Holes are provided in the side of the unit through which field installed refrigerant lines can be run. The evaporator coils are fitted with copper stubs to which the refrigerant line should be soldered. Use silver solder or other high temperature brazing alloy intended for refrigeration work. The stubs are located close to the side of the cabinet so it is a good idea to protect the cabinet insulation from flame damage with a small piece of sheet metal. Also, the manufacturer recommends that the refrigerant lines are filled with dry nitrogen before soldering. This will minimize the formation of ash inside the lines that can clog the capillary strainer.

Discharge Ducting

This unit has its blower discharging directly into the supply duct system resulting in high air velocities close to the end of the unit. To insure efficient air flow, the supply plenum attached to this unit should be a minimum of three feet long. Also, outlet runs should tap into this duct as far from the end of the unit as possible.

Condensate Drain

NOTE: Due to the critical elevations involved with the installations of drains for firred-in units, careful attention needs to be given that the drains are secure and that they have adequate grade. It is recommended that the drainage of these units is tested prior to operation by pouring water into the drain pan. Once the ceiling is finished, the drain line will be very inaccessible for service.

The evaporator in this unit is fitted with a drain pan for the removal of condensation. This drain pan is provided with a ¾" female NPT fitting. Using an elbow, field supplied, the primary drain will be connected and directed to either the left or right side opening of the cabinet. See Figure 5. A second stub is provided for connection of a secondary or overflow drain. This ¾" nipple can be piped to an area where any discharged from it will be noticed, indicating a need for service.

Figure 5

When horizontal run exceeds 15 feet, a vent tee may be necessary to insure proper drainage.

The condensate drainage system should be tested by pouring water into the unit drain pan prior to operation of the unit.

Typical Installation

Specifications subject to change without notice. Installation of this product must comply with prevailing building, safety and N.E.C. codes and should be in accordance with manufacturer's instructions.

Refer to the typical installations on page 5, and installation notes on page 6 when connecting the water heater to the air handler.

Water heaters used for space heating must be listed and labeled as “suitable for (potable) water heating and space heating”.

Water heaters used for space heating must also be used for domestic (potable) water heating.
Troubleshooting

Do’s and Don’ts

FOR COMBINATION SPACE HEATING/DOMESTIC POTABLE WATER SYSTEMS

DO flush out all supply and return water lines between the air handler and the water heater after installation and before startup to eliminate flux, metal chips, sand, or other particulate matter just as you would with any plumbing system.

DO NOT operate in air conditioning mode when any of the following conditions exist:
- inside or outside temperature below 65°F
- low or restricted air flow
- low refrigeration charge

DO NOT use with baseboard radiation (or other system) that has been served by non-potable water such as boiler water or any other possible non-potable source.

DO NOT use the air handler in conjunction with new finned tube baseboard radiation or convectors until you have properly determined the capacity of those units with water inlet temperatures of 140°F (or the temperature water you are going to use).

DO NOT use with piping that has been treated with chromates, boiler seal or other chemicals.

DO NOT add boiler treatment or any chemicals to any air handler piping, when used in a potable water system.

DO NOT use with ferrous piping. The system should be installed only with new piping that is suitable for hot, potable water. Do not use with PVC piping.

DO NOT use any pumps, valves or fittings that are not completely compatible with hot potable water piping.

DO NOT use valves that may cause excessive restriction to waterflow. Use full flow ball or gate valves only.

DO NOT use an air handler with any water heater not having a properly sized and installed Temperature-Pressure (T&P) Relief Valve. Some water heaters include factory-installed valves. Others must be field-installed. Follow the instructions of the water heater manufacturer and local codes when installing the T&P valve.

DO NOT install air handler piping in any manner except as shown in the Instruction Manual.

SOME JURISDICTIONS may require a backflow preventer in the incoming cold water line to the water heater. In such cases, the Temperature-Pressure valve on the water heater may weep or relieve due to expansion of the water when heated. Note that this would occur even if an air handler system were not installed. If a system (air handler/water heater) is installed in a closed and/or high pressure water system, contact the water supplier or local plumbing contractor on how to control this situation.
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>System will not operate</td>
<td>Water heater pilot out</td>
<td>Relight pilot</td>
</tr>
<tr>
<td>Service switch turned off</td>
<td></td>
<td>Turn on switch</td>
</tr>
<tr>
<td>Circuit breaker off</td>
<td></td>
<td>Reset circuit breaker</td>
</tr>
<tr>
<td>Fuse blown</td>
<td></td>
<td>Replace bad fuse</td>
</tr>
<tr>
<td>System off at water heater thermostat</td>
<td></td>
<td>Check thermostat</td>
</tr>
<tr>
<td>System off at air handler thermostat</td>
<td></td>
<td>Check thermostat</td>
</tr>
<tr>
<td>Loose wiring</td>
<td></td>
<td>Check electrical wiring</td>
</tr>
<tr>
<td>Thermostat inoperative</td>
<td></td>
<td>Replace</td>
</tr>
</tbody>
</table>

No heat

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water heater pilot out</td>
<td></td>
<td>Relight pilot</td>
</tr>
<tr>
<td>Power not on</td>
<td></td>
<td>Turn on power</td>
</tr>
<tr>
<td>Water heater not working</td>
<td></td>
<td>Check water heater</td>
</tr>
<tr>
<td>Pump air bound</td>
<td></td>
<td>Follow System Start Up Procedure</td>
</tr>
<tr>
<td>Pump seized</td>
<td></td>
<td>Disassemble and check cause</td>
</tr>
<tr>
<td>Check valve stuck</td>
<td></td>
<td>Remove obstruction</td>
</tr>
<tr>
<td>Thermostat inoperative</td>
<td></td>
<td>Replace</td>
</tr>
<tr>
<td>Incorrect thermostat</td>
<td></td>
<td>Install correct thermostat. See instructions</td>
</tr>
<tr>
<td>Pump inoperative</td>
<td></td>
<td>Replace pump</td>
</tr>
<tr>
<td>Pump relay inoperative</td>
<td></td>
<td>Replace pump relay</td>
</tr>
<tr>
<td>Isolation valves “OFF”</td>
<td></td>
<td>Turn valves “ON”. See instructions</td>
</tr>
<tr>
<td>No water in system</td>
<td></td>
<td>Fill and vent system properly</td>
</tr>
<tr>
<td>Water heater dip tube not installed correctly</td>
<td></td>
<td>Install properly. See water heater instructions</td>
</tr>
<tr>
<td>Water heater thermostat set too low</td>
<td></td>
<td>Turn control up</td>
</tr>
<tr>
<td>Water heater input too low</td>
<td></td>
<td>Install properly sized unit</td>
</tr>
<tr>
<td>Filters clogged</td>
<td></td>
<td>Replace filters</td>
</tr>
<tr>
<td>Air handler too small</td>
<td></td>
<td>Install properly sized unit</td>
</tr>
<tr>
<td>Blower speed too low</td>
<td></td>
<td>Set higher speed</td>
</tr>
<tr>
<td>Heat registers closed</td>
<td></td>
<td>Open registers</td>
</tr>
<tr>
<td>Depneumatic not installed properly</td>
<td></td>
<td>Install properly. See instructions</td>
</tr>
<tr>
<td>Water heater dip tube not installed correctly</td>
<td></td>
<td>Install properly. See water heater instructions</td>
</tr>
<tr>
<td>Insulated water lines</td>
<td></td>
<td>Insulate properly</td>
</tr>
<tr>
<td>Wall thermostat inoperative</td>
<td></td>
<td>Repair or replace</td>
</tr>
<tr>
<td>Unit panels off</td>
<td></td>
<td>Reinstall panels</td>
</tr>
<tr>
<td>Water lines restricted</td>
<td></td>
<td>Remove restriction</td>
</tr>
<tr>
<td>Ducts loose or blocked</td>
<td></td>
<td>Repair ductwork</td>
</tr>
<tr>
<td>Sediment build-up</td>
<td></td>
<td>Clean water heater tank</td>
</tr>
</tbody>
</table>

Insufficient heat

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water heater control set too low</td>
<td></td>
<td>Turn control up</td>
</tr>
<tr>
<td>Water heater input too low</td>
<td></td>
<td>Install properly sized unit</td>
</tr>
<tr>
<td>Filters clogged</td>
<td></td>
<td>Replace filters</td>
</tr>
<tr>
<td>Air handler too small</td>
<td></td>
<td>Install properly sized unit</td>
</tr>
<tr>
<td>Blower speed too low</td>
<td></td>
<td>Set higher speed</td>
</tr>
<tr>
<td>Heat registers closed</td>
<td></td>
<td>Open registers</td>
</tr>
<tr>
<td>Depneumatic not installed properly</td>
<td></td>
<td>Install properly. See instructions</td>
</tr>
<tr>
<td>Water heater dip tube not installed correctly</td>
<td></td>
<td>Install properly. See water heater instructions</td>
</tr>
<tr>
<td>Insulated water lines</td>
<td></td>
<td>Insulate properly</td>
</tr>
<tr>
<td>Wall thermostat inoperative</td>
<td></td>
<td>Repair or replace</td>
</tr>
<tr>
<td>Unit panels off</td>
<td></td>
<td>Reinstall panels</td>
</tr>
<tr>
<td>Water lines restricted</td>
<td></td>
<td>Remove restriction</td>
</tr>
<tr>
<td>Ducts loose or blocked</td>
<td></td>
<td>Repair ductwork</td>
</tr>
<tr>
<td>Sediment build-up</td>
<td></td>
<td>Clean water heater tank</td>
</tr>
</tbody>
</table>

Not enough domestic hot water

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water heater control set too low</td>
<td></td>
<td>Raise setting. See water heater instructions. See warnings</td>
</tr>
<tr>
<td>Water heater not adjusted for rated BTU</td>
<td></td>
<td>Set proper input. See water heater instructions</td>
</tr>
<tr>
<td>Water lines not insulated</td>
<td></td>
<td>Insulate hot water piping</td>
</tr>
<tr>
<td>Draw exceeds recovery rate of water heater</td>
<td></td>
<td>Reduce rate of draw until heater recovers</td>
</tr>
<tr>
<td>Dip tube broken or not installed properly</td>
<td></td>
<td>See water heater instructions</td>
</tr>
</tbody>
</table>

Blower noisy

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blower wheel scraping sides</td>
<td></td>
<td>Re-align wheel</td>
</tr>
<tr>
<td>Blower wheel not balanced</td>
<td></td>
<td>Replace wheel</td>
</tr>
<tr>
<td>Blower wheel loose</td>
<td></td>
<td>Tighten set screw</td>
</tr>
<tr>
<td>Motor shaft bent</td>
<td></td>
<td>Replace motor</td>
</tr>
<tr>
<td>Blower mounting loose</td>
<td></td>
<td>Tighten screws</td>
</tr>
<tr>
<td>Objects in blower wheel</td>
<td></td>
<td>Remove debris</td>
</tr>
</tbody>
</table>

Blower does not operate

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>PROBABLE CAUSE</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inoperative blower relay</td>
<td></td>
<td>Replace relay</td>
</tr>
<tr>
<td>Transformer bad</td>
<td></td>
<td>Replace transformer</td>
</tr>
<tr>
<td>Motor inoperative</td>
<td></td>
<td>Replace motor</td>
</tr>
<tr>
<td>Incorrect or loose wires</td>
<td></td>
<td>Correct wiring</td>
</tr>
<tr>
<td>Motor overload</td>
<td></td>
<td>Remove cause of overload</td>
</tr>
<tr>
<td>Inoperative capacitor</td>
<td></td>
<td>Replace</td>
</tr>
</tbody>
</table>

Consult Air Conditioning installation and service instructions if your system does not cool properly.
FOR THE NAME AND ADDRESS OF THE COMPANY, REFER TO THE RATING PLATE ON THE UNIT

5 YEAR HEATING COIL-5 YEAR EVAPORATOR COIL-1 YEAR PARTS

PRODUCT WARRANTY
SPACE HEATING AIR HANDLER, FAN COIL UNIT
OR HEATING COIL UNIT

5 YEAR LIMITED WARRANTY ON HEATING COIL
The “Company” warrants the copper-tube aluminum fin heating coil (heat exchanger) in this unit in case of a leak within five (5) years from the date of purchase or, in the absence of a Bill of Sale verifying said date, from the date indicated on the serial plate affixed to this unit; see EXCLUSIONS AND LIMITATIONS below. In case of a defect, causing water leakage from this coil, or failure to conform to this warranty, the Company will repair or replace this heating coil. No labor, installation, or freight (if any) charges are included in this warranty. You must pay these costs.

5 YEAR LIMITED WARRANTY ON EVAPORATOR (COOLING) COIL (IF ANY)
The Company warrants the copper-tube, aluminum fin evaporator (cooling) coil in this unit, if one is included and provided that said coil was manufactured or furnished by the Company, in case of a refrigerant leak within 5 years from date of purchase, or in the absence of a Bill of Sale verifying said date, from the date indicated on the serial plate affixed to the unit; see EXCLUSIONS AND LIMITATIONS below. In case of a defect in materials or factory workmanship causing a refrigerant leak from this coil or failure to conform to this warranty, the Company will repair or replace this evaporator coil. No labor, installation, or freight (if any) charges are included in this warranty. You must pay these costs.

LIMITED WARRANTY ON ALL OTHER PARTS
The Company warrants all other component parts of this unit to be free from defects in material and workmanship for a period of one (1) year from the date of purchase, or, in the absence of a Bill of Sale verifying said date, from the date indicated on the serial plate affixed to the unit; see EXCLUSIONS AND LIMITATIONS below. In case of a defect, malfunction or failure to conform to this warranty, the Company will repair or replace, at its option, the parts. No labor, installation, or freight (if any) charges are included in this warranty. You must pay these costs.

EXCLUSIONS AND LIMITATIONS OF THESE LIMITED WARRANTIES
1. THE LIMITED WARRANTIES PROVIDED HEREIN ARE IN LIEU OF ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE; PROVIDED, HOWEVER, THAT IMPLIED WARRANTIES ARE NOT DISCLAIMED DURING THE ONE-YEAR PERIOD FROM DATE OF PURCHASE. SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.
2. The Company shall have no liability hereunder, either direct or contingent, for incidental or consequential damages. Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.
3. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.
4. These warranties shall be void and shall have no effect:
 a. If the design or structure of the unit is, or is attempted to be, modified or altered in any way, including, but not limited to, by attaching non-Company approved appliances or equipment.
 b. If the unit is not properly installed in accordance with the latest issue of (1) the National Electric Code; (2) all local ordinances and regulations pertinent to this unit; and (3) the installation and instruction manual provided with this unit.
 c. If the water heating vessel in the hydronic loop is not equipped with new pressure protective equipment required by local codes, but not less than a pressure relief valve certified by a nationally recognized testing laboratory that maintains periodic inspection of production of listed equipment or materials, as meeting the requirements for Relief Valves. This valve must be marked with a maximum set pressure not to exceed the marked hydrostatic working pressure of the tank.
d. If the air handler is not operated within the factory calibrated limits.

e. If leaks in the Heating Coil or Evaporator Coil, or defects in other parts, arise as the result of improper use, negligence in operation, or accident, or inability of the unit to function because of repairs, adjustments, or replacements improperly made outside the Company’s factory, or because of fire, floods or lightning.

f. If leaks in the Heating Coil or Evaporator Coil arise as a result of puncture by screws or other pointed objects used during installation or servicing of the unit.

g. If the serial plate has been defaced or discarded and you do not have a Bill of Sale to verify the purchase date.

h. If (1) installed in an area where leakage of the air handler or connections would result in damage to the area adjacent to the unit or beneath the unit, or (2) where such a location is unavoidable, a suitable drain pan is not installed under the unit. When a drain pan must be used, the pan must be $1\frac{1}{2}''$ deep and must have a minimum size at least $2''$ greater than the length and width of the unit on all sides, must conform to local code requirements (if any), and must be piped to an adequate drain using minimum $\frac{3}{4}''$ pipe with continuous slope away from the unit. The drain line should terminate in a location where drainage water flowing would be visible to the eye.

i. If the air handler is used for any purpose other than expansion for hydronic space heating and cooling systems.

j. If the air handler is used with any equipment or system that uses heavily chlorinated or otherwise nonpotable water.

k. If the unit water circuit or refrigerant circuit is subjected to pressures or temperatures greater than those maximum values specified on the unit rating plate or in the installation instructions.

l. If leaks in the Heating Coil or Evaporator Coil develop as a result of the unit being exposed to or handling air from a highly corrosive atmospheric condition.

m. If leaks in the Heating Coil or defects in other parts occur as the result of the unit being operated with desalinated (de-ionized) water.

n. If leaks in the tank or defects in other parts arise as a result of sizing that does not comply with the manufacturer’s currently published sizing guides or sizing recommended by the manufacturer.

o. If this air handler or any part has been under water.

5. This warranty does not apply to air filters, to any part attached to the unit that was not furnished by the Company, to damage caused by freezing when the unit is installed in an unconditioned space, or to damage resulting from application of improper electrical service or voltage.

6. This warranty does not apply to connecting tubing installed external to the unit, nor to the joints or connections of said tubing to the unit.

7. Replacements and/or repairs furnished under these warranties do not carry a new warranty, only the unexpired portion of the original warranty.

8. The terms of this warranty may not be varied by any person, whether or not purporting to represent or to act on behalf of the Company.

9. In order to obtain service under these warranties you must promptly notify the installing contractor or dealer, giving the nature of the problem and the model and serial number of the water heater. If for any reason the installer or dealer cannot be located or fails to provide satisfactory warranty service, you should write the Company with the above information.

If after inspection, the installer or dealer, or the Company, determines that repair or replacement is required under these warranties, you must pay the freight charges involved, if any, including those to return the defective part(s) or unit.

This warranty does not apply to products installed in California.